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Abstract 

The micromechanism of the thermoelastic effect (changes in temperature of a solid on its 
adiabatic elastic loading) is treated using the model of a loaded anharmonic oscillator. 
Loading leads to changes in frequency and, hence, to changes in the oscillation energy of the 
oscillators, thereby changing the temperature of a solid. The complicated energetics of 
loading of an excited anharmonic oscillator associated with conversion of the oscillation 
energy into static potential energy, and the reverse process, is described. Relevant problems 
are discussed. 
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1. Introduction 

The thermoelastic effect is a change in temperature of a solid on its adiabatic 
loading leading to elastic deformation of the solid (compression or extension). 

The thermodynamic derivation of the expression for temperature changes of a 
solid (AT) on its adiabatic elastic deformation by a stress c at temperature T, yields 
in the first approximation [l] 

AT M. -=_-fJ 
T C (1) 
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where CI is the coefficient of linear (uniaxial) thermal expansion and C is the specific 
heat capacity (per unit volume). 

Eq. (1) describes fairly well the experimental data for elastic low-molecular solids 

[1,21. 
The thermodynamic analysis shows that the thermoelastic effect and thermal 

expansion of a solid are correlated, but it does not reveal the microscopic mech- 
anism of this effect. 

This paper considers the thermoelastic effect and discusses relevant problems. 

2. Loading of an anharmonic oscillator 

It is well known that, from the point of view of oscillation dynamics, a solid can 
be represented as a set of anharmonic oscillators [3]. Therefore, it is reasonable to 
see how loading affects the behaviour of a basic element of the dynamics of a solid, 
i.e. an anharmonic oscillator. 

The potential well for a one-dimensional anharmonic oscillator has the shape 
shown in Fig. 1 and in the region of small oscillation amplitudes is approximately 
described by 

U(r) x -D +$(r -ro)‘-ig(r -r,J3 (2) 

where D is the well depth (dissociation energy), f is the coefficient of linear 
elasticity, g is the coefficient of non-linear elasticity (anharmonicity), and r,, is the 
coordinate of the well bottom. 

The adiabatic application (fairly slow and quasi-equilibrium) of force F along the 
oscillator axis displaces the well bottom by 

Fig. 1. Potential well at anharmonic interaction. 
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In this case the well shape, i.e. its curvature near the bottom, also changes. 
Therefore, the coefficient of linear elasticity also changes 

This approximation is valid for small F (compared with the maximum elastic force 
F,,, =f1/4g in the potential (2)). 

In contrast to the harmonic oscillator, the oscillation frequency of an anharmonic 
oscillator (2) depends on the degree of its excitation (on energy E,,, or oscillation 
amplitude). Approximately [ 41 

1 

' = 5 (4) 

where m is the mass of the oscillator, and q(E,,) is the oscillation-energy-dependent 
coefficient. At low energies (E,, is much less than D), q(E,,,,) is slightly higher than 
unity [4]. 

Then, if the oscillation frequency of an unloaded oscillator is v, the frequency of 
a loaded anharmonic oscillator will be 

1 

J 

fF 
vF = % mq(E,,,) 

(5) 

If force F is positive, i.e. it is directed towards increasing r (bond extension in the 
oscillator), the frequency decreases. If F is negative (bond compression), the 
frequency increases. 

It is known [5] that the adiabatic invariant for the oscillator is the ratio between 
its oscillation energy and frequency 

E OSC 
- = const (6) 

V 

In other words, in the case of a slow (adiabatic) variation of the oscillator 
parameters its oscillation energy changes proportionally to the frequency variations. 

It follows from Eq. (6) that 

6 Av =---- 
E osc V 

where AE,,, and Av are interrelated changes of E,, and v (generally speaking, they 
are small). When the oscillator is loaded, we obtain from Eq. (5) 

Av=v,-v=-V&F 
f 
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and then 

In the simplest classical model of a solid as a system consisting of similar 
atom-oscillators, the average oscillation energy per degree of freedom at tempera- 
ture T is 

&, = KT 

where K is the Boltzmann constant. Hence 

Then, taking into account Eq. (8), we obtain 

AT 
gF -=__ 

T f 

Thus, we have derived an expression for the changes in temperature of a solid on 
its loading (the thermoelastic effect) caused by changes in the oscillation energy of 
the anharmonic oscillators being loaded. 

It is also easy (or even easier) to derive the expression for the thermoelastic effect 
when the anharmonic oscillators are quantum oscillators, i.e. they have a discrete 
set of oscillation energy levels. 

The population of any energy level E,, is proportional to the Boltzmann factor 
exp( -En /KT). The population of levels remains unaltered on adiabatic loading [ 61 
and, hence, here E,,IT = const. 

In the quantum case E, = hv(0.5 + n), where n is the quantum number, which is 
not an integer for an anharmonic oscillator, in contrast to the harmonic oscillator 
[4]. This expression for En can be regarded as the quantum consequence of the 
adiabatic invariance (see Eq. (6)) at n = const. 

As a result, we obtain v/T = const. From this, using Eq. (5), we come again to 
Eq. (9), i.e. to the description of the thermoelastic effect. 

We will show that Eq. (9) is identical to the thermodynamic expression ( 1). The 
coefficient of thermal expansion is M: = d@T)/dT N (g/f2r,,)/(d&,,,/dT) (see Eq. 
( 13)). The specific heat capacity is C % ( l/ri)/(d&,/dT) (because the quantity of 
atom-oscillators in a unit volume is approx. ri3). Stress is 0 z F/r; (because rg is 
approx. the cross section of the atom oscillator). 

Then AT/T = -(cr/C)o x -(g/f’)F, i.e. it coincides with Eq. (9). 
Therefore, the physical mechanism of the thermoelastic effect is the change in the 

oscillation frequency of loaded anharmonic oscillators. This gives rise to changes in 
the oscillation energy of oscillators, and, as a consequence, to variations in the 
temperature of a solid, which is an ensemble of these oscillators from the dynamic 
point of view. 
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3. Specific features of the energetics of the thermoelastic effect 

Let us consider the energy aspects of the loading of an anharmonic oscillator. 
From Eq. (2), the adiabatic deformation of an elastic bond Ar by force F leads 

to a change in the static potential energy AU, i.e. a change in the energy associated 
with the displacement of the well bottom, given by 

AU = $(Ar)* - ig(Ar)3 M $f?iE* - igr$z3 z sic2 (10) 

where Ar/r, = E is a relative bond deformation, and at small E (E c l), the term of 
the third order with respect to E can be neglected. 

For a harmonic oscillator, the energy problems would be closed by such a change 
in the static component of potential energy on loading. 

For the anharmonic oscillator, the situation is different. As Eq. (8) shows, the 
adiabatic loading gives rise not only to changes in the static potential energy, but 
also to changes in the oscillation energy. 

In the approximation of the first order with respect to E 

Then, from Eq. (8) 

AE,,, N - E,,, g roE 
f 

Note that (g/f )r,, = y corresponds to Gruneissen’s coefficient. 
The total energy variation of the oscillator will be 

AW(E) =AE&&) +AU(&) 1: -Eo,,~ro~+~~E2 
f 

(11) 

(12) 

The AE,,(E), AU(E) and A W(E) dependences are shown in Fig. 2. 
The situation is highly surprising. At low degrees of extension, the total oscillator 

energy decreases. The paradox is that the external force (F), no doubt, does work 
extending the bonds in the oscillator, but the total oscillator energy reduces. This 
change in the total energy is evidently due to the different effects of variations in U 
and E,,, in the region of positive E, AU being quadratic with respect to E and AE,, 
being linear (quasi-linear). The situation becomes understandable if we take into 
account the initial dynamic (both zero and thermal) expansion (E,,) of the excited 
anharmonic oscillator. 

The value of &,, can be estimated from the condition of the minimum of the total 
oscillator energy which is equivalent to 

46 WC91 = o 

de 

Then we obtain 

(13) 
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+AU 

Fig. 2. Changes of different energy components on adiabatic loading (deformation) of an anharmonic 
oscillator: E, relative extension (compression) of an elastic bond in the oscillator; AU, change in the static 
component of the potential energy; AE,,, change in the oscillation energy of the oscillator; 
A W = AE,, + AU, change in the total oscillator energy. 

The value of so corresponds to the position of the minimum of the AW(E) 
dependence in Fig. 2. 

In this case, both extension and compression counted off from e0 give rise to an 
increase of the total oscillator energy that occurs at the expense of the work done 
by the external force. 

The detailed energetics of an adiabatically loaded anharmonic oscillator are 
complex. 

As the oscillator is compressed from E = .eO to E = 0, the static potential energy 
decreases (Fig. 2). Apparently this energy change, together with the work done by 
the external force, contributes to a growth in the oscillation energy, i.e. the static 
potential energy is converted into the oscillation energy. On further compression 
(from E = 0 to small values of -E), almost all the work done by the external force 
is spent on the oscillation energy growth. 

The reverse process occurs on oscillator extension from E = co. A decrease in the 
oscillation energy leads to an additional growth in the static potential energy 
(additional with respect to the work of the external force), i.e. the oscillation energy 
is transformed into the static potential energy. 
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Thus, the anharmonic oscillator is a specific transformer that converts energy 
from one type into another. 

It is evident that these energy transformations are also valid for zero oscillations 
of a quantum anharmonic oscillator. This means that the zero energy (which 
dominates in the oscillation dynamics of solids at temperatures that are fairly low 
as compared to Debye temperatures) can also be transformed into the static 
potential energy or can take the potential energy on oscillator loading. 

The thermoelastic effect is associated only with changes in the oscillation energy. 
It should be noted that under real conditions the thermoelastic effect is to a great 
extent associated with changes in the zero energy. Indeed, in the region of the 
Debye temperatures (for many solids the Debye temperatures are not far from 
room temperature), the zero oscillation energy is about a quarter of all the 
oscillation energy and its fraction grows with ,decreasing temperature. But because 
the zero energy E, is also proportional to the oscillation frequency (E, = 0.5hv, 
where h is Planck’s constant), its variations on oscillator loading constitute an 
appreciable fraction of the energy changes of an excited oscillator (changes in the 
energy level of “thermal” oscillations). 

4. Questions arising in the analysis of the behaviour of an anharmonic oscillator 

The consideration of the behaviour of an excited anharmonic oscillator on its 
adiabatic loading explaining the thermoelastic effect by changes in the oscillation 
frequency of the oscillator, raises some questions. 

For instance, the mechanism of conversion of the work of the external force into 
the oscillation energy on compression is not clear. The same is true for the 
mechanism underlying conversion of the oscillation energy into static potential 
energy on extension. 

Another important problem is dynamic expansion. The literal interpretation of 
Eq. ( 13) and its derivation (minimization of the total energy) lead to the conclusion 
that excitement of an anharmonic oscillator gives rise to a real extension of the 
bond, i.e. to the appearance of a static component in the oscillatory deformation of 
the bond. This points to a displacement of the potential well bottom or a shift in 
the equilibrium position of a vibrating particle (the position that corresponds to the 
maximum of the kinetic oscillation energy and zero potential oscillation energy). In 
its turn, the appearance of a static component of extension requires that a static 
component of the extending force appears. The question is just how real are both 
deformation and the force. 

It is interesting to note that there is another estimate of the dynamic expansion 
that coincides quantitatively with the previous one, but has an entirely different 
meaning [ 71. 

Indeed the elastic force for the potential (2) is 

Fe, = -F = -f(r - ro) + g(r - ro)2 = -f Ar +g(Ar)2 
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The condition for stability of oscillation is that the time-average force is zero 
(otherwise the vibrating particle will “leave” the well) 

(F& = -f& + g(Ar): = 0 

from here 

In the harmonic approximation 

&, =.fiW 

Then 

As can be seen, E, coincides with so (Eq. (13)). 
However, E, defines an average (in time) displacement of a vibrating particle, 

caused by asymmetry of the well (the result of anharmonicity) in the case of a 
constant position of the well bottom. But so, as noted above, defines the well 
bottom displacement. So the problem as to which situation corresponds to the real 
one remains unresolved. 

It is likely that this question could be clarified to some extent by measurements 
of microexpansion (by X-ray diffraction using the angular position of the reflexes) 
under the action of fairly large static loads (especially compressing ones). 

5. Conclusions 

The micromechanism of the thermoelastic effect undoubtedly consists of changes 
in the oscillation energy of anharmonic oscillators in solids on loading. 

At the same time, a number of questions concerning details of the energetics of 
excited anharmonic oscillators and of the processes occurring on their loading still 
remain to be solved. 

References 

[l] A. Nadai, Theory of Flow and Fracture of Solids, Vol. 2, McGraw-Hill, New York, 1963. 
[2] J.P. Joule, Proc. R. Sot., 8 (1857) 564. 
[3] C. Kittel, Introduction to Solid State Physics, 4th edn., John Wiley, New York, 1972. 
[4] M.V. Volkenstein, M.A. Eliashevich and B.I. Stepanov, Vibrations of Molecules, Vol. 1, Gostechiz- 

dat, Moscow, 1949. 



A.I. Slutsker, V. P. VolodinlThermochimica Acta 247 (1994) 11 I - 119 119 

[5] L.D. Landau and E.M. Lifshits, Theoretical Physics, Vol. 1 (Mechanics), Nauka, Moscow, 1973. 
[6] L.D. Landau and E.M. Lifshits, Theoretical Physics, Vol. 5, Part 1 (Quantum Mechanics), 

Gostechizdat, Moscow, 1948. 
[7j J.I. Frenkel, Kinetic Theory of Liquids, Dover Publications, New York, 1955. 


